Physics (Ist Year of study, Ist Semester)

Credit value (ECTS) 5

Course category Fundamental (Mandatory)

Course holder: Iuliana MOTRESCU, Lecturer Ph.D.

Discipline objectives (course and practical works)

- fundamental physical quantities, quantities used to describe the studied phenomena, measuring units, multiples, conversions

- physical phenomena on which the functioning of living organism is based on

- the interactions between different physical factors and the living organisms, directly related with some methods used in medicine

- the physical principle of some analysis methods used in medicine

- using the laboratory equipment, performing measurements, analysing and interpreting experimental results

Contents (syllabus)

Course (chapters/subchapters)

Physical quantities and measuring units

Fundamental quantities, measuring units, multiples, conversions

Mechanics

Principles of the Newtonian mechanics. Types of movement. Surface and contact phenomena: surface tension and capillarity. Applications. Transport phenomena: viscosity, diffusion, osmosis. Applications.

Thermodynamics

Thermodynamic systems, states and processes. Laws of thermodynamics and applications. Heat transfer.

Electricity

Electrostatics. Electric currents. Circuits. Ohm's law. Kirchhoff's laws. Equivalent circuits.

Oscillations and waves

Oscillations and waves. Electromagnetic spectrum. Non-ionizing radiations and their interaction with matter. Ionizing radiations. Natural and artificial radioactivity. The interaction of ionizing radiations with matter. Radioactive isotopes and applications. Radioprotection.

Physical basis of analysis methods

Separation techniques (sedimentation, centrifugation, chromatography, etc.) Spectral analysis (absorption, infrared based techniques, energy dispersive X-ray spectroscopy), Mass spectroscopy

Interpretation of experimental data

Measuring the surface tension of some liquids using the counting drop method Measuring the relative viscosity of a liquid

Measuring the dynamic viscosity of a liquid based on Stokes law

Measuring the electrical conductibility of an ionic liquid using Kohlrausch bridge

Measuring the refractive index of a material using the microscope

Measuring the focal length of a thin convergent lens

Measuring the sugar content of a solution using the polarimeter

Studying the thermal radiation. Stefan-Boltzmann law

Measuring the specific heat of water

The thermocouple

Measuring the adiabatic index using Clement-Desormes method

Detection of nuclear radiation

Measuring the fractal length

Bibliography

- 1. Lecture notes
- 2. Stefanescu C., Rusu V., Medical Biophysics. An introduction for students, Ed. Tehnopress, Iasi, 2008.
- 3. Davidovits P., Physics in Biology and Medicine 3rd edition, Elsevier, 2008.
- 4. Amadir Kane S., Introduction to Physics in Modern Medicine second edition, CRC Press Taylor & Francis Group, LLC, 2009.
- 5. Sybesma Chr., Biophysics, Kluwer Academic Publishers, Dordrecht, Boston, London, 1989.

Evaluation

Evaluation form	Evaluation Methods	Percentage of the final grade
Exam	Written examination	70%
Appreciation of the activity during the semester	Oral and written assessment during the semester and verification tests	30%

Contact

Iuliana MOTRESCU, Lecturer Ph.D.

Faculty of Horticulture - USAMV Iași

3 Mihail Sadoveanu Alley, Iaşi, 700490, Romania

phone: 0040 232 407527 E-mail: imotrescu@uaiasi.ro